
The Cookbook principle for Changes and SOPs

Purpose
DevOps
Environments
Creating the recipe and doing deployment
From recipe to SOP
Divide and conquer

Purpose
To make good Changes and SOP's () - its similar to being a chef that need to learn how to make a good dish, or a marine Standard Operating Procedures
that need to perform a certain function really good, as in: repetition, repetition....

In short, the goal is to end up with a solid recipe, to make the same every time - That the Cookbook principle for me"good meal"

First, lets have a look at the environments we (commonly) deal with in an every days Service Operation environment:

System Purpose Who can deploy here? The good and bad stuff

Developm
ent

Basic or custom development, this can be on the
developers own systems or a development setup

Developer A voliatile environment with a potentionally high number of
changes and no control.

Very flexible and agile for high productivity

Test Testing what has been released via development Developer A voliatile environment with a potentionally high number of
changes

Stage Deployment and testing of the release after test in Test Sysadmin (And/or
Developer if DevOps is
used)

A known/controlled environment

Production Sysadmin (And/or
Developer if DevOps is
used)

A known/controlled environment - few and controlled changes
that has be have been performed in Stage.

The environments from above is not the only ones, in many (large) setups we can have several others:

System Purpose Who can deploy here? The good and bad stuff

UAT User Acceptance Test Sysadmin (And/or Developer if
DevOps is used)

A known/controlled environment - few and controlled changes that
has be have been performed in Stage.

integration Special integrations tests, typically with 3rd party
systems outside our control.

Import/Export/Sync

Sysadmin (And/or Developer if
DevOps is used)

A known/controlled environment - few and controlled changes that
has be have been performed in Stage.

DevOps
DevOps and concepts extending the traditional concepts of the Developer vs. Sysadmin approach, where a common sence is that Continues Delivery
Sysadmins deploys, while Developers does not interact with Stage- or Production-environments.

These are not necessarily colliding ways of thinking, but requires some thinking and implementation that enforces special rules and approval-procedures,
since (learned over 10 years as Sysadmin):

The Developers Point Of View on classic virtues and procedures are typically focused in a complete other direction than those of the Sysadmin
- The Developer has a focus on getting quickly to the next finish line with features and deployment - sometimes the cost are giving a little slack
on test and deployment diciplin.

Giving the Developer access to Deployment in the Stage or Production without enforcing special rules and approval-procedures, do consider
the battle lost

https://www.mos-eisley.dk/display/ITSM/Kogebogsprincippet+for+Changes+og+SOPs
http://en.wikipedia.org/wiki/Standard_Operating_Procedure
http://en.wikipedia.org/wiki/Sysadmin
http://en.wikipedia.org/wiki/Sysadmin
http://en.wikipedia.org/wiki/Sysadmin
http://en.wikipedia.org/wiki/DevOps
http://en.wikipedia.org/wiki/Continuous_delivery

During DevOps or Continues Delivery You should implement rules, procedures and technically based access/approval workflows where deployment
depends on successfully deployment/test in the previous environments, to prevent unintended or hasty deployment from the Developers side.

Environments
The minimum should be:

Even better:

Creating the recipe and doing deployment
Seeing beside the number og levels of environments on our platform, we do have the oppertunity to improve our recipe through the environments from
Development to Production, and with todays techonologies for virtualizing like or snapshotting filesystems (like) within a short timeframe - we VMware ZFS
can repeat and improve the recipe several times, even within each environment:

Do also give data confidentiality and data security a thought, when Developers are given any form of access to Stage or Prod, as these
environments often contains confidential or classified content; just by giving Developers access, the numbers of people with possible access
rises, secondly because the Developer [potentially] has the possibility to use the software to extract confidential or classified informations more
directly.

One of the developers common reasons to require Stage or Production access is the need for debug or log informations, here I do recommend
using a facility like for collecting data (in a controlled manner) off the servers/systems.splunk

Also, are often a requirement for IT-Revision and data security/controlseparation of duties

http://en.wikipedia.org/wiki/VMware
http://en.wikipedia.org/wiki/ZFS
http://www.splunk.com/?ac=partner_netic
http://en.wikipedia.org/wiki/Separation_of_duties

From recipe to SOP
A recipe in typically going forward from A to B, it does not (always) imply the thoughts of getting back to the base, besides rolling back to a snapshot.

In many situations this type of rollback in not possible, allowed or comply with real-life (prod) - this can be for systems required to have low or zero
downtime, or to maintain 100% audit or date/time/id integrity - for example when interacting with 3rd party systems.

At the same time, the recipe is typically very specific regarding objects and entities, with actual host and database names in it.

Hence, we can have a wish for cleaning the recipe and making a SOP - where all specific names and references in the nomenclature are becoming
placeholders instead. The SOP then needs to have a section explainng what the placeholders should contain (Pre-requisites).

Se Template for a SOP

So final step is to make the SOP:

https://www.mos-eisley.dk/display/ITSM/Template+for+a+SOP

Divide and conquer
The Divide and conquer principle is crucial for good Changes and SOPs - as opposite to havin a big Change with many steps and types of
implementation (Application, Firewall, Database, OS), You should divide the Change into smaller Changes that are independant and/or sequentiel to be
done separately. This also means that a rollback of a Change is not highly critical for the complete scope of the Changes.

	The Cookbook principle for Changes and SOPs

