
Loading Musicbrainz in Elasticsearch
I stumpled upon the article and decided to play around.INSERT INTO LOGSTASH SELECT DATA FROM DATABASE

Installing PostgreSQL and loading the database and the data into Elasticsearch was just as described; the manual for MBSlave is very good.

Refer to the for morehttps://musicbrainz.org/doc/MusicBrainz_Database

My Input file:

10-musicbrainz.conf

input {
 jdbc {
 jdbc_driver_library => "/etc/logstash/postgresql-9.4.1212.jre6.jar"
 jdbc_driver_class => "org.postgresql.Driver"
 jdbc_connection_string => "jdbc:postgresql://localhost:5432/musicbrainz?
user=musicbrainz&password=*******"
 jdbc_user => "musicbrainz"
 statement_filepath => "/etc/logstash/query.sql"
 schedule => "0 15 * * *"
 }
}

Notice the Schedule - the Query runs one time each day at 15:00 - but the data is static, so its not nessesary....But the schedule makes sure I know when
the Query is runned one time (only)

My Output file:

output {

 elasticsearch
 {
 hosts => "localhost:9200"
 sniffing => false
 manage_template => false
 index => "musicbrainz-%{+YYYY.MM.dd}"
 }
}

The load gave this in Kibana:

I decided to use elkserver3 and a new logstash on that one, to avoid messing elkserver1 up.

Is possible to have a different Logstash config on each server in the cluster. Also - I decided to name the Index "musicbrainz-%{+YYYY.MM.
dd}" to have some control over the load and a possible cleanup afterwards.

https://www.elastic.co/blog/logstash-jdbc-input-plugin
https://musicbrainz.org/doc/MusicBrainz_Database

And verifying the row count in PostgreSQL with:

SELECT count(*) AS Dummy FROM (
SELECT
 release_group.gid AS album_id,
 release_group.type AS album_primary_type_id,
 release_group_primary_type.name AS album_primary_type_name,
 release.name AS release_name,
 artist.name AS artist_name,
 artist.gid AS artist_gid,
 artist_credit.id AS artist_credit_id,
 artist.type AS artist_type_id,
 artist_type.name AS artist_type_name,
 artist.begin_date_year artist_begin_date_year,
 area.name AS artist_country_name,
 release_country.date_year AS release_year,
 release_country.date_month AS release_month,
 release_country.date_day AS release_day
FROM
 musicbrainz.artist
INNER JOIN musicbrainz.artist_credit_name
 ON artist_credit_name.artist = artist.id
INNER JOIN musicbrainz.artist_credit
 ON artist_credit.id = artist_credit_name.artist_credit
INNER JOIN musicbrainz.release_group
 ON release_group.artist_credit = artist_credit.id
INNER JOIN musicbrainz.release
 ON release.release_group = release_group.id
INNER JOIN musicbrainz.release_country
 ON release.id = release_country.release
INNER JOIN musicbrainz.artist_type
 ON artist.type = artist_type.id
INNER JOIN musicbrainz.area
 ON artist.area = area.id
INNER JOIN musicbrainz.release_group_primary_type
 ON release_group_primary_type.id = release_group.type
WHERE
 ((release_country.date_year IS NOT NULL) AND
 (release_country.date_month IS NOT NULL) AND
 (release_country.date_day IS NOT NULL))
) As Dummy2

Gave:

 dummy

 622527
(1 row)

Success - same row count

I do notice that some rows seems to be the same:

Or not? The "album_id" is the same, but in one row the "release_year" differs from the two others....

Running the SQL

SELECT Distinct * FROM (
SELECT
 release_group.gid AS album_id,
 release_group.type AS album_primary_type_id,
 release_group_primary_type.name AS album_primary_type_name,
 release.name AS release_name,
 artist.name AS artist_name,
 artist.gid AS artist_gid,
 artist_credit.id AS artist_credit_id,
 artist.type AS artist_type_id,
 artist_type.name AS artist_type_name,
 artist.begin_date_year artist_begin_date_year,
 area.name AS artist_country_name,
 release_country.date_year AS release_year,
 release_country.date_month AS release_month,
 release_country.date_day AS release_day
FROM
 musicbrainz.artist
INNER JOIN musicbrainz.artist_credit_name
 ON artist_credit_name.artist = artist.id
INNER JOIN musicbrainz.artist_credit
 ON artist_credit.id = artist_credit_name.artist_credit
INNER JOIN musicbrainz.release_group
 ON release_group.artist_credit = artist_credit.id
INNER JOIN musicbrainz.release
 ON release.release_group = release_group.id
INNER JOIN musicbrainz.release_country
 ON release.id = release_country.release
INNER JOIN musicbrainz.artist_type
 ON artist.type = artist_type.id
INNER JOIN musicbrainz.area
 ON artist.area = area.id
INNER JOIN musicbrainz.release_group_primary_type
 ON release_group_primary_type.id = release_group.type
WHERE
 ((release_country.date_year IS NOT NULL) AND
 (release_country.date_month IS NOT NULL) AND
 (release_country.date_day IS NOT NULL))
) As Dummy2

Gave

560155 rows

So, there is a possible redundancy in the SQL provided from https://www.elastic.co/blog/logstash-jdbc-input-plugin

Reloading the data (after deleting the Index) gives:

https://www.elastic.co/blog/logstash-jdbc-input-plugin

Samples
Here is a sample of all albums from "Denmark" with "Peter" in the Artist name:

A few Visualizations..

Whats Next..
Well, this is unfinished business...there are so much more data to combine......

And another project could be parsing IMDB data ... http://www.imdb.com/interfaces

http://www.imdb.com/interfaces

	Loading Musicbrainz in Elasticsearch

